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Abstract 

In step-scan diffraction measurements, the diffraction 
angle 20 is an observation with standard uncertainty 
u(20). By the law of uncertainty propagation, u(20), 
typically 0.001 < u(20) < 0.004 °, affects the standard 
uncertainty Utot~(Y) of the intensity y at each step 20i, 
depending on the local slope f, = dy/d(20)2~, by 
U2tal02i) • Upoisson2 q_ Lv~iu(20)] 2, where Up0isso n = (yi) il/2 is 
the conventional Poisson statistics. For the intensity y at 
20 of steepest slope, Uto~l(y ) is given by Ut2o~(y)- 
U2oisson(1 q-v2), where v = 2u(20)yo!/2/h is the ratio of 
~u(20) and Upoisson, Y0 is the peak intensity and h the full 

' width at half-maximum of the profile. The error of the 
intensities at individual steps modifies also the standard 
uncertainty of the integrated intensity: u2ota1(int)= 
U2oisson(int)(1 + V2/2). AS v depends on ylo/Z/h , it is 
evident that the importance of the correction increases 
with increasing count rates and decreasing line width. In 
most practical cases, f/u(20) contributes a multiple of 
Poisson statistics to the standard uncertainty of intensity. 
It will be shown that with a realistic weighting scheme 
the X 2 as well as the Durbin-Watson test become more 
meaningful. 

1. Introduction 

Statistical validity of the standard uncertainty of intensity 
data is a necessity for the successful structure determina- 
tion by least-squares refinement or maximum-entropy 
methods. Concerning powder data, Sakata & Cooper 
(1979) found that the standard uncertainties of param- 
eters in full-profile refinements by the Rietveld method 
(Rietveld, 1967, 1969) are usually underestimated by at 
least a factor of two compared with parameters deduced 
from single-crystal data. A systematic research into the 
question of the effect of profile step counting time and of 
the profile step width on the structural parameters and 
their standard uncertainty followed by Hill & Madsen 
(1984, 1986). Flack & Vincent (1980) suggested the 
application of a quantitative test for serial correlation, 
published by Durbin & Watson (1950, 1951, 1971), to 
single-crystal intensity data. Hill & Madsen (1986) 
applied this test to optimize the profile step width. A 
review of the use of the Durbin-Watson test applied to 
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the Rietveld analysis was given by Hill & Flack (1987). 
Brrar & Lelann (1991) suggested a modification of the 
least-squares procedure to reduce the influence of serial 
correlation on the standard uncertainty of the structural 
parameters. Some general comments on the question of 
statistical validity in the Rietveld method are summarized 
by Willis & Albinati (1992) and by Prince (1993). The 
fundamentals of the statistical descriptors including the 
goodness of fit and weighting schemes used in crystal- 
lography are given by Schwarzenbach et al. (1989). In 
this paper, we focus on the statistical quality of step-scan 
data, that is, on the intensities Yi and the angles 20 i for  
each step i. 

In profile refinement, each observed intensity yobs is 
assigned to a 20 value, which is a real number with a 
standard uncertainty u(20) given by the mechanical 
precision of the instrument. However, in most data- 
evaluation programs, 20 is calculated under the condition 
of a constant step width and the error of the position is 
ignored. The latter is independent of the standard 
uncertainty of the count rate Yi, given by Poisson 
statistics Urois~o n - - y i  1/2. Therefore, the total variance of 
the intensity Yi at step i may be calculated by uncertainty 
propagation: 

- - "  U p o i s s o  n "3 t -  ~u(20)] 2, (1) 

with ~ = dy/d(20)lzr, the local slope of the intensity 
profile at step i, position 20 i (Lehmann et al., 1987; 
Ihringer, 1995a). 

In the following, we analyse systematically the impact 
of a modified weighting scheme on the refinement results 
by repeated experiments. It includes, as given above, the 
Poisson statistics for the intensities and an assumption of 
a Gaussian distribution of the observed 20 angle around 
its mean value. 

2. Experimental 

Repeated measurements of four different reflections are 
the basis for the subsequent statistical analysis. They 
were carried out on two automated Guinier diifrac- 
tometers (Ihringer & Appel, 1984; Ihringer & R6ttger, 
1993, 1994, 1997) both mounted on line-focus windows 
of a rotating-anode generator with a copper target (fine 
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Table 1. Summary of experimental details 

FWHM and peak intensity Y0 are mean values of  all measurements of 
the corresponding reflection, n is the number of  repetitions. 

Step range FWHM 
Sample Reflection (020) (o) Y0 n 

Silicon I" 220 46.75-47.75 0.080 13170 447 
Silicon I" 311 55.5-56.5 0.084 6960 585 
Silicon I 331 75.58-76.58 0.100 3464 585 
PbSO4:~ 201 49.5-49.98 0.081 5473 580 

I" 51 steps, 
0.02°20. 
0.02°20. 

counting time 30 s, step width A20 = 
:~ 25steps, counting time 10s, step width A20 = 

focus 0.3 x 3 mm, 45 kV, 80 mA). Monitor counters 
behind each of the Ge (111) monochromators, adjusted 
for Kot 1 radiation, controlled the primary-beam intensity. 
Details of the measurements are given in Table 1. 

3. Data evaluation 

3.1. Qualifier for the refinement results 

For each profile, the correspondence of the n (n = 51 
for the Si 220, 311, 331, n = 25 for the PbSO4 201 
reflections) measured intensity data yobs, their standard 
uncertainties Ug and the calculated intensities for the 

mode l  of the profile with p parameters defined for 
example in equations (3)-(7) is ,~uantified by the 
magnitude of M = E i n l [ ( y  ° b s -  y~C) lug]. The signifi- 
cance level of M may be determined applying the X 2 test 
for u = n - p  degrees of freedom or, more directly, by 
calculating N~ = (M - u)/(2u) 1/2 (Parrish & Wilson, 
1992; Ihringer, 1995b), where N~ < 3 is expected when 
the model fits the data and their standard uncertainties. 

More significant than a single value of  M is its 
distribution for repeated measurements of the same 
reflection because it approaches the X 2 distribution for u 
degrees of  freedom supposing that model, data and 
standard uncertainties are correct. Thus, we compare the 
distribution of  M with the X 2 distribution in three 
different cases to judge the validity of the assumed 
standard uncertainties. As a qualifier for a whole series of 
experiments, we use the average value N~, given in all 
figures, ~ (1/447) 447 = ~]u=l N~ u" N~ is calculated for the 
# -- 1 , . . . , 4 4 7  scans of Si 220 as well as for profiles 
given in Table 1. 

3.2. Intensity of the focused primary beam 

The monitor counters at both Guinier diffractometers 
are fixed downstream of the monochromator perpendi- 
cular to the beam path and record the diffuse radiation 
scattered from a polyamide foil. We used these data to 
verify the validity of Poisson statistics for a fixed counter 

~t 

arrangement. For each of the lZ = 1 , . . . ,  447 measure- 
ments of the Si 220 reflection, the qualifier Mu is 

calculated: 

i=I 

The observed intensity y~On is the monitor count 
collected during the constant measuring time of  30 or 
10s, respectively (see Table 1), at each of the 
i = 1 . . . . .  n steps of  the profile with standard uncertainty 
ui = (~/on)l/2. The calculated intensity y~on is the mean 
value of  the monitor rate during n steps, that is, the model 
assumes constant primary radiation during the measuring 
time for a profile. Fig. 1 shows the distribution of the Mu 
values for all 447 profiles of the Si 220 reflection together 
with the X 2 distribution for 50 degrees of freedom, as 
there are 51 measurements within one profile and the 
model - constant intensity - consists of 1 parameter. 

It is evident that M for most of the profiles lies within 
the X 2 distribution, but some are too high. M outside the 
X 2 distribution means that within the measuring time for 
a profile (typically 25 min) the monitor count rate 
deviated more from its mean value than expected by 
Poisson statistics. Nevertheless, we dare to conclude from 
Fig. 1 that in most cases the assumption of a constant 
primary-beam intensity with Poisson statistics is justified, 
even if No = 6.3. 

3.3. Models for the profile 
Next, each of the 447 scans of the Si 220 reflection 

was refined using five different models for the profile: 
(i) Lorentzian (L) with three parameters: 

L(x,,~,hK, IK)=I,~(2/~rh,O[1/(1 + gK)l. (3) 

(ii) Gaussian (G) with three parameters: 

G(XiK, hK, 1K) = IK{[2(ln 2)a/2]/ (hKZrl/z)} 

× exp[--(ln 2) ~K]. (4) 

I I I I 

50 

i gL  I I I I  m 
0 
0 100 

100 

200 3uO 4~0 500 
M 

Fig. 1. Histogram of M (full) calculated with the monitor count rate 
assuming constant intensity within the 51 steps of a profile, standard 
uncertainties from Poisson statistics and X 2 distribution (light) for 50 
degrees of freedom, N~ = 6.3 -4- 1.4. 
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(iii) Pseudo-Voigt (PV) with four parameters: 

PV(XiK, hi,;, IK, ri) --- rlL(xi~, hK, [K) 
+ ( 1  - r])G(XiK, hK, IK). (5) 

(iv) Pseudo-Voigt + Gaussian (PV + G) with seven 
parameters: 

PV + G = rlL(XiK, h K, IK) -Jr" (1 -- 71) G(XiK, hK, [K) 

+ G(X;K, h'K, IX.) (6) 

(V) Two pseudo-Voigts (PV] + PV2) with eight 
parameters: 

PV 1 + PV2 = rlL(X,K, hK, IK) + (1 -- rt) G(xi~;, hx, IK) 

+ rfL(X;K, h~, Ix) + (1 -- rl') G(~K, h~, Ix.) 
(7) 

(Young, 1993). 
All functions are given for the integrated intensity I K 

with argument xiK = (20i - 20K)(2/hK) for step i at angle 
20i, where 20K is the position of  the Kth reflection and h K 
is the full width at half-maximum (FWHM). Two 
additional parameters were used in each case for a 
straight-line background. 

3.4. Si 220 reflection with pseudo-Voigt profile function 

The histogram of M for the model with one pseudo- 
Voigt function (3) with standard uncertainties calculated 
from Poisson statistics only is given in Fig. 2(a) 
together with the corresponding X 2 distribution for 
t., = 45 degrees of freedom. It is easy to see and 
confirmed by the mean value of N ~ -  23.3 that the M 
distribution is quite different from the X 2 distribution. For 
the pure .Gaussian or Lorentzian profiles, the agreement 
is even worse. 

For the histogram in Fig. 2(b), the standard uncertain- 
ties are modified by an Ansatz including a Gaussian 
distributed error for 20 with u(20) -- 0.001 °. The value 
0.001 ° may be seen as a lower limit of  the mechanical 
accuracy of the gear: 0.001 < u ( 2 0 ) < 0 . 0 0 5  °. The 
uncertainty propagation ut2ot~ _ _  Upoisson2 -}-[~/U(20)] 2 is 
calculated using 

y; = ~-~' = (1 / 12h)(y_ 2 - 8y_1 + 8y1 - -  Y2) (8) 

with the step width h. From Fig. 2(b), it is evident that the 
M distribution fits X 2 much better than in Fig. 2(a) and 

decreases to 6.5, which is still too high. 

3.5. Variation of  the weighting scheme . 

Best coincidence between the M and the X 2 distribu- 
tions is obtained with u ( 2 0 ) -  0.00375 °, which yields  
~ = - 0 . 0 6 ,  see Fig. 2(c). This value was found 
from a variation of the assumed gear accuracy 
u~(20) = k × 0.00025 ° (k = 0, . . . ,  27) by calculating 
28 distributions M k for different u/,(20). For each k, a 

qualifier M/, is defined by 

M'k = ~ (ni - npi) 2/npi, (9) 
i = 1  

which measures the coincidence between the M k and the 
X z distribution. Both distributions are shown in Fig. 2 for 
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Fig. 2. Histogram of M (full) for 447 silicon 220 reflections refined by 
pseudo-Voigt profiles and X 2 distribution (light) for45 degrees of 
freedom. M calculated with: (a) standard uncertainties from Poisson 
statistics only [u(20) ----- 0°], ~ = 23.3 4- 0.3; (b) standard uncertain- 
ties calculated using equation (1) with u(20) = 0.001 °, 

= 6.5 4- 0.1; (c) standard uncertainties calculated from equation 
(1) with u(20) = 0.00375 °, N~ = -0.06 4- 0.04. 
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Table 2. Mean value of  No for various reflections (see Table 1) for  each of  the profile functions calculated with 
u(20) = 0 and u(20) = 0001 °, respectively [equation (1)] 

The PbSO4 reflection was asymmetric. 

Profile Si 220 Si 311 Si 331 PbSO4 201 

Lorentz (L) 263-t-1.8 1204-0.7 47.04-0.4 115.04-0.5 
Gauss (G) 1734-1.5 1094-0.5 42.84-0.2 145.04-0.8 
PV 234-0.3 154-0.2 3.9-t-0.08 80.84-0.5 
PV+G 2.54-0.09 1.94-0.1 1.44-0.06 8.34-0.1 
PVI+PV2 1.1-t-0.06 0.44-0.05 0.4-t-0.05 8.14-0.1 
Lorentz (L) 854-1 57.34-4 33.24-0.3 72.04-0.3 
Gauss (G) 115-t-1 82.54-3 37.34-0.2 95.14-0.4 
PV 6.5-4-1 6.04-0.08 2.34-0.06 50.14-0.2 
PV+G 1.24-0.6 0.64-0.06 0.84-0.05 4.24-0.08 
PV1 +PV2 0.14-0.05 -0.14-0.04 0.14-0.05 4.74-0.09 

u(20) (°) 

0 

0.001 

u k = 0, 0.001, 0.00375°: the full histogram gives the 
frequency n i of M k in the interval i and the light 
histogram shows its theoretical value npi calculated for 
the total number of n values M k by 

xi 
p i =  f x2(x)dx. (10) 

The abscissa is divided into intervals of  size 5. The 
weights npi follow from Poisson statistics for the 
frequency in each interval. For the optimal uk(20), M' 
i s  expected to be the number of  degrees of freedom r - 1. 
The  quantitative measure 

N~ - [M' - (r - 1)]/[2(r - 1)]1/2 (11) 

calculated for the 28 different values of uk(20 ) and r 
intervals of  size 2 is given in Fig. 3. ILexhibits best 

coincidence of  the M k and X 2 distributions by the 
minimum of N~ = 1.7 at u ( 2 0 ) =  0.00375 ° . The 
magnitude of u(20) is in good agreement with the 
standard uncertainty for the gears given by the 
manufacturing firm. 

5 0 0  , , 

N u' 
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x x X 

x X XXXX 

0 I I ~Xxx~ yXXI ! 

0 1 2 3 4 5 6 7 

u(2e) / 10 .3 degrees 

Fig. 3. N" giving the difference between the M and the X 2 distribution 
(see Fig. 2) as a function of the standard uncertainty of the angle 
position, u(20) = 0.00375 ° yields the best fit. 

3.6. Si 220, Si 113, Si 331 and PbS04 201 reflections 
with different models for the profile 

The analysis given here in detail for the Si 220 data 
refined with the pseudo-Voigt profile model was repeated 
with all profile functions for the Si 311, Si 331 and 
PbSO4 201 reflections. Table 2 summarizes the results for 
u(20) = 0 ° and u(20) = 0.001 °. 

A comment should be given for profiles PV + G and 
PV~ + PV2: each of  them is a combination of two curves. 
From Table 2, it is evident that they fit best to all of  the 
profiles. However, it should be noted that, for the 
refinement of e.g. the Si 220 reflection with profile PVx 
+ PV2, all eight parameters consisting of two sets 0, xi/~, 
hx, I x for the two pseudo-Voigt functions have been 
recalculated for each of  the 447 reflections. So, variations 
in shape between subsequent profiles are compensated by 
variation of  the individual parameter sets for the two 
contributing profiles PVx and PV2. In the analysis given 
here, even the single pseudo-Voigt function is more 
flexible than in the Rietveld refinement, as we recalcu- 
lated rl and FWHM for each of the 447 Si 220 reflections, 
whereas in Rietveld refinement all profiles within a 
diffraction diagram share the same r/value and FWHM 
function. 

3.7. Durbin Watson d and No for the Si 220 reflection 

This section gives the analysis of the impact of  the 
modified weighting scheme upon the Durbin-Watson 
qualifiers, which are used as indicators for serial 
correlation. First, for each of the 447 Si 220 reflections 
using a pseudo-Voigt function, d and Q were calculated 
for a significance level o fp  = 3 (Flack & Vincent, 1980). 
Fig. 4 exhibits the result for u ( 2 0 ) =  0 ° (a) and, 
u(20) = 0.0035 ° (b). 

For u(20) = 0 °, Fig. 4(a) shows d > Q for most of the 
profiles, so the Durbin-Watson test judges observed and 
calculated data as free from serial correlation. With' 
u(20) = 0.0035 °, however, there is serial correlation for 
nearly 30% of the profiles (Fig. 4b), even if the model, a 
single symmetric pseudo-Voigt function [equation (5)], 
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was not changed. To decide if  this is an artifact, we. 
repeated the analysis with the same data but with the 
most flexible function PV1 + PV2 [equation (7)], which 
fits asymmetric profiles too and yields perfect refinement 
even with u(20) = 0 ° (see Table 2). It follows that d > Q, 
no serial correlation, for all data independent of the 
weighting scheme. Evidently, in the refinement with one 
single pseudo-Voigt function, the minor asymmetry in 
some of  the Si 220 profiles is blurred by weighting with 
Poisson statistics only. However, with the more realistic~ 
weighting scheme, the statistic tests become more' 
susceptible to differences between observed and calcu- 
lated data. 

The plot of  N,  versus Durbin-Watson d for 447 Si 220 
reflections (Fig. 4 bottom) shows that there is no 
correlation between the two quantities. Changing the 
weighting scheme with u ( 2 0 ) =  0.0035 ° affects mainly 
N~, it decreases from 30 to 6. The d distribution becomes 
broadened and, with the single pseudo-Voigt model, 
shifted in the direction indicating positive serial correla- 
tion. 

4. D i s c u s s i o n  

4.1. Standard uncertainty o f  the intensity at the angle o f  
steepest ascent 

By the law of uncertainty propagation, u(20) con- 
tributes to the square of  the standard uncertainty U2total(y) 
of  the intensity y [see equation (1)]. To estimate the 
magnitude of  ~u(20)]  2 compared with 2 calculated Upoisson 
from Poisson statistics only, we define the ratio 

v ~ y;u(20)/Uroisso n (12) 

and determine its maximum value, which is reached 
where the profile shows its steepest slope [equation (1)]. 

If a Gaussian profile is assumed, 

y =  yoexp[- (41n2/h2)x  2] ( x =  2 0 - 2 0 o ) ,  (13) 

Xs = 2 0 s -  20 o follows from the condition for steepest 
slope, 

dZY = 0 ,  (14) 
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to give 

xs = h/2(21n2) x/z. (15), 

Inserting xs into (12) gives the ratio v as 

= (8 ln2)l/2yo1/z exp( -  ~)u(20)/h 
. ~  

,~ (2Y01/2/h)u(20) (16) 

and the total standard uncertainty becomes 

Ut2tal (,V) 2 V2). (17) = Upoisson(1 + 

The ratio v, which is dependent on the peak intensity Y0 
for some characteristic values for FWHM h and for 
u(20) = 0.005 °, is given in Fig. 5. For v < 1, u(20) may 
be  omitted, however, as FWHM is less than 0.1 ° for most 
instruments, v < 1 holds for a profile with peak intensities 
below 500 only. At a synchrotron source, with FWHM = 
0.025 °, e.g. even for a profile with low peak intensity of 
500 counts Fig. 5 shows that ~.u(20) is nine times the 

~standard uncertainty from Poisson statistics NPoisso n. From 
Fig. 5, it might be seen that, when Y0 > 2000, even for 
broad profiles (FWHM ,~ 0.2°20), the contribution of 
f,.u(20) becomes more than twice that of Upoi~o n. 

4.2. Standard uncertainty of integrated intensity 
The standard uncertainty of the angular position u(20) 

does not only affect the standard uncertainty of the count 
rate collected at a certain angle but also the standard 
uncertainty of the integrated intensity of a reflection. For 

the integrated intensity 

n 

I -- y~,yobs (18) 
i-----1 

for n steps over the profile, the standard uncertainty 
including u(20) is 

n 

~o~(Int) .-- t~voisson(Int) -Jr- ~ u ( 2 0 ) ]  2 
i=1 

n n 

= ~yObs + ~D//u(20)] 2. (19) 
i = 1  i = 1  

An analytical expression follows when the sums are 
replaced by integrals and the intensities are approximated 
by Gaussian profiles: 

Ut2otal(lAlt) = yo[hzrl/2 /2(ln 2) 1/2] + u2(20)~(2zr ln 2)l/2 /h. 
(20) 

11/2 / 
The ratio • .[ET='~u(2°)121 /NPoisson(Int) is calculated 
as 

{~_,7=,~u(20)]2}1/2 [ u2(20)~(2rcln2),/2/h ],/2 

Upo,,,o.C t) =L J 
(21) 

Using v defined in (16) for 20 at steepest slope, we find 

n 2 ] / 2  
v { ~i=113//u(20)] } ~ (22)  

Upoisson(hlt) 21/2 

and so the standard uncertainty for the integrated 
intensity yields 

u2o~(Int) = U~oisson(int)(1 + v2/2). (23) 
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Fig. 5. Ratio v [equation (12)] at the position of steepest slope in a 
Gaussian profile for u(20)= 0.005 °. v is the ratio of two 
contributions to the standard uncertainty in intensity: ~[u(20)] 
depending on the error in angular position divided by Ueoi~so n. The 
dependence of v on intensity is given for Gaussians with different 
values of FWHM: 0.025, 0.05, 0.1, 0.2 and 0.4 °, respectively. 

80 

60 

40 

I I I I 

20 

67000 6 8 0 0 0  69000 70000 71000 72000 
Integrated intensity 

Fig. 6. Histogram of the integrated intensities of 311 Si 220 
measurements, I = 69 714, Utotal(Int) = 670 [see equation (23)] and 
theoretical purely Poisson distributed intensity with 7 =  69714, 
Upoi~n(rmt) =, 264 (light). 
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It is evident that the correction for the integrated intensity 
is of the same order of magnitude as the correction at the 
angle of steepest slope. 

The validity of (23) was checked using the integrated 
intensifies of the 447 Si 220 reflections. These measure- 
ments were processed in two groups, comprising, 
respectively, profiles 1-135 and 136-447 because the 
set-up was readjusted during the measurements. Fig. 6 
shows the histogram of the integrated intensities of 311 
Si 220 reflections, each scaled upon the mean monitor 
count rate, with the standard uncertainty Uto~l(Int) - 670, 

447 _7 2 defined as Utotal(Int ) -" (1/310))-~'u=136 (Iu - ) . Using 
the standard uncertainty of Poisson statistics 
u I~t = 264, calculated from the mean value of the Poisson 
intensity I ---- 69 714, equations (23) and (18) yield a 
standard uncertainty in angular position of 
u(20) = 0.0011 °. The same evaluation for reflections 
1-135 yields u(20) - 0.0013 °. 

5. Conclusions 

This analysis of the influence of the weighting system on 
statistic qualifiers shows that a realistic assumption of the 
uncertainties during the experiment is the prerequisite to 
judge the model by statistic tests. Very valuable is the 
combination of X 2, given here as No, and the Durbin- 
Watson test, as they are not correlated. We see also that 
uncertainties assumed for the data correlate to some 
extent with the model, if the test relies on N o only. This 
causes the difference between u(20)=  0.0011 ° found 
from (23), using the FWHM and the intensity of the Si  
220 reflection, and u(20) -- 0.00375 ° found by minimiz- 
ing N" [equation (11)]. Nevertheless, we conclude that in 
diffractometry the typical mechanical accuracy of the 
counter gear of 0.001 < u(20) < 0.004 ° gives a good 
estimate for u(20). In the case of fixed multicounter 

• arrangements, the standard uncertainty of 20 results from 
the deviation of the actual position of each channel from 
its calculated value. For neutron diffraction with one 
counter and a FWHM of typically 0.2°20, only for peak 
intensities <400 counts is the standard uncertainty in 
intensity caused by u(20) less than the Poisson statistics 
(Fig. 5). If the intensities increase, either by addition of 
several channels or by increasing measflring time, the 
slope increases because the line width remains constant 
and u(20) causes the major contribution to the intensity 
statistics. This explains the well known fact (Hill, 1993) 
that with increasing measuring time the statistical 
qualities of the data (e.g. GoF) - using Poisson statistics 
alone - become worse. So, in programs using step-scan 
data, the standard uncertainty of each intensity value 
should be given as input data to allow the adaptation of 
the weighting scheme to the individual experiment (Ritter 
et al., 1996). However, if a structure refinement program 
allows a modification of the weighting scheme for the 
integrated intensity/, comparison with (23) shows that an 

expression like 

w = 1/(I  + kI 2) (24) 

with constant k is an approximation allowing for the 
influence of the standard uncertainty in the angular 
position. 
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